Using
Real-Time Linux
in Real Life

Klaas van Gend
Senior Solutions & Services Architect
MontaVista Software

Who is Klaas van Gend?

Klaas-the-Geek:

e Started programming age 13

* First encountered Linux 1993

» Software Engineer since 1998
 Lead developer of umtsmon

* Program Committee member for
various open source conferences

Klaas-the-Sales-Guy:
» Joined MontaVista as FAE (not sales) 2004
* Was part of European MontaVista Team
* Awarded FAE of the year 2006
* Working in USA until July 1st, 2009

Images do not necessarily depict reality

History of Linux and Real Time

UNIX = Fair

Preemption in user space

Fixed Overhead / O(1) Scheduler

Robert Love’s Kernel Preemption

Ingo Molnar’s Voluntary preemption

The RT patch

Paul McKenney’s RCU work

Ingo Molnar’s new CFSScheduler

Gregory Haskin’s Optimizations/Scheduler work

N =
{ — S
N 3 o
\m <
O ge)
e ®
S n
o °

Q
2
> =
= 0
o a. A4S S
7 %
' ime
/ /

eeeeeeeeeee

Real Time Linux

Main assumption:

The highest priority task goes first

ALWAYS

Thus:
Everything should be pre-emptable
Nothing should keep higher priority things from executing

Key Elements of Real-Time Linux

Making Linux Real-time required addressing:

Minimized interrupt disable times

Interrupt handling via schedulable threads

Fully pre-emptable kernel
Short critical sections

Perform synchronization via mutexes (not spin locks)
Allows involuntary pre-emption

Mutex support for priority inheritance

High Resolution timers

Minimize number of mutexes / critical sections

Optimizing scheduler decisions

Sleeping Spinlocks

Original Linux UP Spinlock:

IRQ disable on lock — nothing else can interrupt
Not RT friendly

Original Linux SMP Spinlock:
Spinning (busy wait)
Not performance friendly

Solution:
“Sleeping Spmlock”e

Problem: Priority Inversion

orio A Attempts to lock Q, held by C

high ' |

oio B / v No luck, so next-in-line process runs...
med | I | 30

prio C } C never gets to run...

low - ’ '

Thus \ never gets to run...

¢ Solution:
“Priority
Inheritance”

Robust Mutexes

Problem:

Inter process semaphores (“named ~")
Process A holds semaphore and dies
Process B blocks on the same semaphore

On regular Linux: mutex locked forever
Thus waiting process B held forever
...until reboot

A

X
-

Solution:'“ﬁé
“Robust
Mutex”

Priority Queues

Problem:
1000 processes waiting for a locked mutex Y
Mutex gets unlocked — who will go first? Solution: ©
On regular Linux, the first waiting process ‘gets’ the “Priority
mutex

)
On RT Linux, the highest priority process should wake Queues

up and get the lock

Real Time
iIs NOT fair,
remember?

What’s wrong with the standard IRQ

mechanism?

Scheduler: ALL tasklets first
“Original process continues” Scheduler:

No tasklets left, schedule
prioritized processes

/ |
Running process N
Interrupt occur Wdules

“Tasklet” (bottom halve)

Kernel starts interrupt handler

High prio task

hardware
interrupt

“‘unbound interrupt latency”

Solution:
s “Threaded IRQs”

RT-patch Thread Context

Interrupt Handlers

IRQ handler: “wake_process()”

W

hardware
interrupt

N J
Y
Highest prid
process run:
to completio

Aedule

/ext proce:
<N

Jo—

Tasklet

End c

“Slee

f handler

p thread”

Time sliced based timing

1 Time slice = 1/HZ

app app app

nanosléep(ZSus)

' Real wakeup
Expected wakeup

- Solution:
s “Hi-res Timers”

Key Elements of Real-Time Linux

(revisited)
Making Linux Real-time required addressing: Finished? | Mainline?

Minimized interrupt disable times :

BKL still present ! Slellie EEtelis
Interrupt handling via schedulable threads

Not acceptable to all drivers Done NO
Fully pre-emptable kernel

Short critical sections LIS MC
Perform synchronization via mutexes (not spin locks)

Allows involuntary pre-emption Done Partly
Mutex support for priority inheritance / queueing
High Resolution timers Done Yes
Minimize number of mutexes / critical sections Ongoing Some
Optimizing scheduler decisions

New Scheduler (CFS) in mainline Ongoing Some

Some Results

l.e. Benchmarks
l.e. Synthetic

Intel IXP425 @ xxx Mhz, 2.6.18+

None [BESKERT[RT

Min |4 5 5

Avg |6 10 7

Max | 9797 | 2679 349 RT Limit

FreeScale 8349 mITX @xxxMHz,

2.6.18+

:-Desktop RT
Min |0 0 0
Avg |5 0 0
Max | 3968 | 1604 53

What about “In Real Life”?

Or: Thanks for all the theory,
but where’s the applicability?

A Laser Printer — black box

Cancel button

1L

>

Network .
. . Printed
Print printer
Sheets
Jobs

Ripping: from Print Job to Image

Job: Rasterized Dithered Stored

PS file
GhostScript é

The Mechanical Processes: paper

Paper Exit Several actuators
e 0) * Several paper sensors:
O « Tray state
o) « Page start/end
‘(& Phatoreceptaor =CF

Drum Assembly

Paper mustrun
smoothly through the
paper path

* Timing depends on it

Paper Tray

The Mechanical Processes: print

Imaging
Drum

L]

; Beam Scanning Path
K >

Beam
Alignment
Lens

*

Start / ‘e,

Sensor

*
*

6 ’
Laser
\/) Scanning
Mirror

Events and timings

8.5" = 5100 dots

Tray Sensors:
« Tray present
» Paper picked up

Paper trail:

- Paper ready for drum

» Paper speed

Printing:

* Mirror speed

« Start line sensor
* End line sensor

Various:

* Fuser temperature
« Cancel button

* Network

10 page
/minute

Paper:
* 10 page/minute
* 120 inch/minute

19.7 millisec / mm

11" = 6600 lines

Laser:

* 10 page/minute

« 70,000 lines/minute
* 5100 dots/line

1.2 millisec / line
168 nanosec / dot

How Real Time?

Linux 2.4 kernel

Linux 2.6 kernel

Linux 2.6-rt kernel

FG/BG systems

FPGAs
Analog HF electronics

1s
100 ms
10 ms
1 ms
100 us
10 us
1 us
100 ns
10 ns
1ns
100 ps

Tray present
Paper temperature

Cancel button
Paper picked up

Paper ready for drum
Paper speed
Load next line buffer

Start line + fire

Mirror speed

Inputs & Outputs

End-of-Li

?;/

Paper sensors

Tray Drum Finish

The Block Diagram - details

o
End-of-Line

-

P~

=

Tray Drum Finish

Requirement: User Space Driver

Blogking
write

DMA

driver

% IRQ Linux Kernel
End-of-Line

Encoder PWM

Implementation: data path time line

copy from user ()

%/RQ DMA done sleep ()

2 %IRQ end-of-line
v wakeup () B
l DA - Kernel Space

rite (new image line)

sigwait ()

Start DMA transfer
Return from blocking write ()

(preempted)

Implementation: priorities

Buffer driver needs ultimate priority These go first
“User space driver” needs 2" priority ALWAYS

Network Queue (kernel) 1/0 bound processes
Harddisk

Fuser controller
— But takes very little time
— Runs of a timer every second?

CUPS } Mostly I/0O bound processes
Avahi/Samba

GhostScriptRIP |~ CPU/RAM/Disk hog

Problems to solve

Many print jobs can be waiting for ripping
— Store on disk ©

GhostScript takes random amounts of RAM
— enable swap-to-disk to reduce RAM

Buffer subsystem must always reside in RAM completely

— full page (4 MB) must be in RAM
* hard drives are slow (11 ms access time)
— mlockall (MCL_CURRENT | MCL_FUTURE)

End-of-Line IRQ should not be a shared IRQ

Kernel driver is relatively trivial
— GPL: must publish source to customers

The power of Linux

The current printer With some simple
enhancements

The power of Linux

The current printer With some simple
enhancements

The RT patch is 3 years old by now
“It will be in the kernel in a year from now”
Several products shipping with it
Still being worked on

Good systems design is hard
Think twice about what to do in software and hardware
RT Patch can solve some problems
Understand your priorities
Draw diagrams

A printer that does 42 pages a minute will attract at least geeks

Thank you

Klaas.van.Gend@mvista.com

