
MontaVista Software, LLC | 2315 North 1st Street San Jose, CA, 95131 | www.mvista.com

Beyond the Yocto™ Project:
The key requirements for a stable, production-grade
Linux

AUTHORS

Jim Gallagher
Senior Marketing Team Lead, MontaVista Software, LLC.

Tim Weeks
Senior Consultant, TKO Marketing Consultants Ltd.

And the decision is not just about costs:
maintaining a home-grown Linux
environment entails schedule, quality, and
compliance risks that are eliminated by the
use of a guaranteed commercial-grade
distribution.

http://www.mvista.com/

MontaVista Software, LLC | 2315 North 1st Street San Jose, CA, 95131 | www.mvista.com

Contents

EXECUTIVE SUMMARY .. 3

SOLUTION OVERVIEW .. 5

UNDERSTANDING THE LONG-TERM COSTS OF PRODUCTION-GRADE SOFTWARE
QUALITY ... 5

CONCLUSIONS .. 10

MIGRATION TO SUPPORTED LINUX ... 10

http://www.mvista.com/
file:///D:/My%20Desktop%20Docs/2016/Desktop%20Dec'16/WhitePaper%20-%20CGX%20&%20Docker%20-%20Creating%20Network%20for%20Things_MVISTA_120916.docx%23_Toc509402911

Executive Summary

Home-grown or commercial Linux: a binary choice?
Are you a home-grown Linux user?

Or do you use a commercial-grade Linux distro provided by a third party such as
MontaVista?

It’s customary to present this as a binary choice. But in the real world of the
embedded developer, it’s becoming increasingly common for development teams to
be both home-grown and commercial Linux users. And there’s one very good reason
for this: the Yocto Project.

The Yocto Project has given an extraordinary boost to the early-stage productivity
of developers. By using a Yocto Project-compatible distro provided by an SoC
manufacturer, or by using the Yocto Project to build their own Linux distro,
developers can massively reduce the interval between creating a product idea and
starting development of the application.

So a Yocto Project Linux is a great way to start an embedded development.

But is it a great way to finish it?

It’s easy to underestimate or even overlook the costs and risks associated with
maintenance and support of a production-grade Linux distribution. When a
hardware product is shipped, the Linux operating system on which it runs has to be
stable, bug-free, and resistant to malware and other security threats.

Now in a new white paper, MontaVista has itemized the costs of maintenance and
support over the lifetime of a typical commercial or industrial embedded device.
The calculation depends to some extent on a project’s complexity, but it shows that
there is typically very little cost advantage in maintaining an in-house Linux OS
compared to the cost of licensing a commercial-grade Linux distro from a provider
such as MontaVista.

And the decision is not just about costs: maintaining a home-grown Linux
environment entails schedule, quality, and compliance risks that are eliminated by
the use of a guaranteed commercial-grade distro.

On the grounds of stability, security and reliability, there is a clear argument in
favour of commercial Linux for production implementations of a product design. For

prototyping, however, many developers still find a Yocto Project distro provides the
quickest, easiest route to first hardware.

Which is why the old binary choice – home-grown or commercial Linux? - is binary
no longer: more and more development teams will in fact use each at the
appropriate stage of development.

Fig 1: Commercializing embedded Linux™ on Open Yocto™ framework

Solution Overview

From its inception, Linux has been an open operating system platform which
provides a broad range of optional features and extensions. In the embedded
version of Linux, this modularity gives developers the potential to modify and tailor
their OS to meet precisely the functional requirements of their platform and
application, while excluding unwanted and unnecessary features to keep the OS
image as small and simple as possible.

It is this very modularity which explains the rising popularity among embedded
developers of the Yocto Project: it provides a set of templates, tools and methods
which enable users to select from the myriad drivers, interfaces and other elements
available in Linux to put together a custom distribution. Quickly and easily, users
can build a Linux platform, and use the Yocto Project and open-source code to
implement the features and functions that their end product requires.

While the Yocto Project provides an excellent platform for making quick and
productive progress with prototyping on x86, ARM or MIPS hardware, at some point
in the development of a commercial end product the OEM has to make a long-term
plan for the product which ensures its stability, security and reliability over its
production lifetime.

Once a development team has started a prototype on the Yocto Project, it is natural
to want to stay on the same, familiar platform. But developers need to apply a
rational and realistic method for assessing the relative costs and risks associated
with a production-grade product, either by maintaining and supporting their Linux
platform themselves via the Yocto Project, or by using a Yocto-compatible
commercially maintained Linux package. This article discusses this issue from the
point of view of a commercial Linux provider, MontaVista, which is also an
enthusiastic supporter of the Yocto Project and a member of its governing Advisory
Board.

Understanding the long-term costs of production-grade software quality

The genius of the Yocto Project is to provide a coherent and readily understood
framework for selecting and sourcing the elements of a custom Linux distribution,
and to give users a set of build tools that enable them to quickly and reliably bring
up their tailored Linux on a target processor board. It also provides a standard way
to share Linux build projects with the community.

Many embedded engineers first encounter the Yocto Project via the reference board
supplied by the manufacturer of their chosen microprocessor, companies such as
Cavium, Intel, NXP or Xilinx. These semiconductor manufacturers have been eager
to fund and support the Yocto Project, seeing it as a way to simplify and accelerate
the process of implementing a large, full-featured OS on their large and complex
devices. Many processor makers as a matter of course now make their own Linux
distributions, optimized for their own Systems-on-Chip (SoCs) and compatible with
the Yocto Project specifications.

At some point after board bring-up, however, every development team will face the
need to seek support. Typical support scenarios could include:

 The developer wishes to modify the Linux distribution that a semiconductor

vendor bundled with its SoC reference board to support its custom hardware.

The semiconductor vendor’s bundled Linux distribution, which worked

perfectly on its own board, does not work perfectly, or even at all, on the new

custom hardware.

 The OEM decides it needs added Linux packages such as advanced security

(for instance Secure Boot), virtualization (container or KVM), or carrier-

grade packages such as Java or Qt, that are not supplied or supported by the

semiconductor vendor.

Fig 2: Testing boards in a development engineering lab. Engineering support is not a

core function of the Yocto Project.
(Image credit: MontaVista Board Farm)

It is common to assume that support and help with getting a Yocto Project-
compatible Linux to work will be forthcoming either from the processor vendor
itself, or from the Yocto Project community. In reality, however, processor vendors
are not software vendors: they provide a free Linux distribution as an enabler for
their product, but they do not make resources available to support users of it. They
also do not expect to maintain each processor’s Linux distribution beyond its first
release. Even if they do release patches for a legacy distribution, they are not willing
to spend the time and resource necessary to have it integrated into the official Linux
code base.

This reflects the fact that these distributions are not intended to be production-
grade software: they are not tested and verified to production-grade quality, and
they cannot guarantee compatibility with device drivers and other code which are
integrated into the official Linux code base.

So a processor vendor’s Linux helps a project get started quickly: once started,
however, the developer is mostly on their own and unsupported.

How different is the situation with the Yocto Project? The project itself is an open-
source collaboration under the aegis of the Linux Foundation, and supported by
large and well-resourced companies. But there is no support organization within the
Yocto Project. There is a community; but the response from the community to
requests for help varies in a more or less unpredictable way. If a developer posts a
query, a member of the community might see it, might have encountered the
problem, might know the solution and might then post a helpful answer.

But if a developer posts a query that is not interesting or pertinent to members of
the community, or that is too specialized or application-specific to have been
experienced by others, or that is unclearly or confusingly described, or that does not
readily yield to attempts at resolution, the community involvement will be provided
on a best-effort basis and with no guarantee that the issue will be resolved. And of
course it is impossible to know in advance which outcome the developer is going to
meet.

So if support comes from the Yocto Project community at all, it will be on a
haphazard, chance basis, and it might or might not produce an input that helps to
resolve the developer’s problem.

What this highlights is that, by choosing to use the Yocto Project, a developer is
working on her or his own. This has many advantages: the platform is free, it
provides for easier customization, and its direction is tuned to the needs of users
rather than of a proprietor. But equally this means that there is no organization
standing behind users to ensure the quality and stability of the software on which
their products depend. To be clear, the released Yocto versions are vetted and tested
to some degree. But as the Yocto developers and maintainers move forward to the

next release, their focus is on the future, not on previous versions. The burden then
falls on the developer to continue to maintain their chosen Yocto Project product
with bug fixes and Common Vulnerabilities and Exposures (CVEs).

Fig 3: CVE Resolution Process

The same argument applies to quality assurance and maintenance. For testing and
software quality verification, the Yocto Project provides a platform to facilitate the
development of test cases. But this is not the same thing as providing the actual test
cases themselves. There are almost no ready-made, off-the-shelf test cases for
embedded software available in the Yocto Project.

Again, this is hardly worth worrying about at the early prototyping stage, when the
emphasis is on creating a viable product which implements the features specified by
marketing. But in the design’s transition from prototype to production-grade,
manufactured unit, comprehensive testing is required to verify that it works
without a glitch under all rated operating conditions. This requires that the OEM
develop or adapt community tests. For this later phase of the product development
cycle, the Yocto Project framework again leaves the developer on his or her own to
verify and maintain the quality of their Linux platform.

This analysis extends beyond the first market release of the product to the
remainder of its production lifecycle. The Linux on which any embedded product
design is built requires periodic updates, to take account of emerging security flaws,
to provide new device drivers and so on. Who is going to perform these updates?

Semiconductor vendors do not as a rule update their Yocto Project-compatible
Linux distributions – they are optimized one-time-only for a specific part, and are
not subsequently updated. To incorporate new features or bug fixes, a developer
must move to the next version of the Linux distribution.

If an OEM uses its own, custom Linux built with Yocto Project tools, it falls to that
OEM to update it. A quick calculation of the potential cost of such maintenance is
often misleading. There is a common perception that the scope of Linux
maintenance is relatively limited. Experience shows it is not. The table below gives a
calculation of the typical commitment of time required to support a home-grown
Linux distro in a relatively simple end product, a low-end edge networking device.

Engineering function Full-time equivalent engineer time

(years)
Development phase:
BSP bring-up and customization 0.75
Software build 1.5
QA and test content generation 2.5
Sub-total 4.75

Customer trial and FCS
BSP maintenance 0.25
Software build 1
CVEs and bug fixes 2
Continuous QA 1.5
Export compliance 0.5
Sub-total 5.25

Lifetime maintenance (annual time
commitment)

Software build 0.5
Maintenance 1
Continuous QA 0.5
Sub-total 2

The lifetime maintenance value of two full-time equivalent engineer years is a
recurring annual commitment once the device has gone into production.

The cost and risk associated with the engineering workload described in the table –
a reasonable estimate drawn from real-world experience – should be borne in mind
when making a cost and return-on-investment decision about whether to pay for a
commercial Linux subscription. The commercial Linux offering takes care of all the
functions listed in the table, eliminating entirely the cost of providing and managing
the engineer time listed above.

Conclusions

Migration to supported Linux

None of the above is to argue against use of the Yocto Project – quite the contrary.
MontaVista is a member of the Yocto Project Advisory Board precisely because it is
such a productive tool for early-stage embedded Linux development. The Yocto
Project will enable embedded Linux developments to see the light of day that would
before have been no more than a developer’s idea: that’s good for the world at large,
and good generally for the embedded Linux community, of which MontaVista is part.

But when a proof-of-concept or early prototype are ready to become fully-fledged
products, a supported Linux distribution such as MontaVista addresses all of the
problems described in this article. A commercial Linux distribution such as
MontaVista is:

 Fully supported by a full-time team of dedicated support engineers. These

engineers know the distribution intimately, and can quickly and accurately

diagnose a user’s problem and draw on the company’s knowledge bank to

implement an effective solution.

 Fully tested and verified. MontaVista runs a board farm of more than 50

processors on which it runs a comprehensive test suite for every upgrade

and change to its Linux product. A Linux vendor which offers ‘carrier-grade’

Linux, as MontaVista does, has to be able to guarantee stability and

availability. This requires minutely detailed quality assurance, and every

user of MontaVista Linux benefits from the stable, bug-free performance that

results from it.

 Permanently maintained for guaranteed lifetimes. MontaVista Linux

distributions are constantly updated, using patches that are regularly

incorporated into the official Linux code base. In addition, sometimes patches

are applied by backporting from a new Linux kernel to an older version.

While this is not rocket science, it can be tricky and convoluted to have a

patch backported successfully.

And if a commercial Linux vendor offers products that are Yocto Project-compatible,
then developers can be sure that software developed on a Yocto Project-based
custom Linux distribution may be readily ported to the compatible commercial

Linux, thus preserving the value of development work done in the Yocto Project
environment.

While the Yocto Project approach accelerates early-stage development, then,
migration to a commercial Linux distribution as the base for production-grade
software saves engineering time and cost, reduces development and maintenance
risk, and assures OEMs of a stable and secure platform for products that they attach
their valuable brands to.

The Yocto Project will and should continue to grow in popularity. The mistake that
an OEM should avoid making is to underestimate the cost and risk associated with
basing a production part on Yocto Project-based software.

This White Paper is for informational purposes only. MONTAVISTA MAKES NO WARRANTIES, EXPRESS OR

IMPLIED, IN THIS WHITE PAPER. MontaVista cannot be responsible for errors in typography or photography.

©2018 MontaVista Software, LLC. All rights reserved. Linux is a registered trademark of Linus Torvalds. MontaVista is a

registered trademarks or registered trademarks of MontaVista Software, LLC. All other names mentioned are trademarks,

registered trademarks or service marks of their respective companies

Information in this document is subject to change without notice.

MontaVista Software, LLC | 2315 North 1st Street San Jose, CA, 95131 | www.mvista.com

DOC. ID. (MVTP-BeyondYocto-031518)

http://www.mvista.com/

