
MontaVista Software, LLC | 2315 North 1st Street San Jose, CA, 95131 | www.mvista.com

Legacy to Linux Migration: Challenges
and Benefits

Sachin Kaushik
Technical Marketing Specialist

MONTAVISTA SOFTWARE, LLC.

Migrating code to a latest version of the system
software is a daunting task, even in the best case.
Migrating from a legacy (usually closed source)
Real Time OS to Linux™ is arguably much more
difficult. Or is it? This paper brings out the
challenges and benefits of such a move!

http://www.mvista.com/

MontaVista Software, LLC | 2315 North 1st Street San Jose, CA, 95131 | www.mvista.com

Contents

EXECUTIVE SUMMARY .. 3

INTRODUCTION .. 4

SOLUTION OVERVIEW .. 7

Migration to Linux, Challenges ... 7

Challenges of Embedded Linux Development.. 10

Migration Benefits: Improved Reliability .. 15

FAQ - Misconceptions about Embedded Linux .. 16

CONCLUSIONS .. 21

APPENDICES .. 23

http://www.mvista.com/
file:///C:/Users/Sachin/Desktop/MVISTA_WhitePaper_Making%20the%20case%20for%20Legacy2Linux_061716.docx%23_Toc454006845

Executive Summary

Whether you are planning a move to embedded Linux or are just considering the

investment needed to convert existing applications to run on embedded Linux,

this white paper will help you understand the transition process, assess the

challenges and risks, and appreciate the benefits realized from such a move.

While comparable in terms of overall robustness and resource management,

these (RTOS) systems present their own challenges to developers of next-

generation applications:

• Proprietary, closed source code

• Limited availability of board support and device drivers

• High run-time licensing costs

• Small user communities and tiny developer populations

• Limited interoperability with enterprise and desktop implementations of

Linux, UNIX and Windows

• Poor scalability, especially for very large and very small memory sizes, and for

multi-core and multi-processor application

They also can suffer from subtle technical issues. One such RTOS exposes/maps

shared resources (e.g., all semaphores) to all user processes, risking system

corruption; another uses does not truly support paged memory mapping,

limiting run-time response to heavy loading.

This white paper investigates whether a traditional proprietary RTOS can be

substituted with embedded Linux, and if this kind of migration can lead to

reduced licensing costs and increased general quality of the system.

Introduction

Embedded Linux, since it appearance in 1999, has unseated many legacy /

proprietary / In-house Real Time OS (RTOS) like VxWorks and others as the

embedded OS of choice for a wide variety of embedded applications. Once

considered to be an experimental platform, today embedded Linux is 100%

mainstream and leads market and design share across key application areas,

including wireless, data networking, telecommunications infrastructure, and

industrial electronics among others.

Notwithstanding the hard-won leadership position enjoyed by Linux in

embedded, vast quantities of legacy designs, as well as a percentage of new

applications, continue to use Legacy RTOSs. While not every RTOS based design

is a candidate for migration to a modern OS like Linux, many projects remain

locked into the legacy RTOS due to

 Concerns about retooling / retraining for a new platform

 Misconceptions about Linux architecture, capabilities and performance

 Budget constraints for migration engineering

The purpose of this white paper is to address these and other concerns, to make a

clear case for migration, and to elucidate both technical and financial benefits

conferred by moving. You should find this document useful if you are planning

a move to embedded Linux in the near future or even if your team is just

considering the level of investment to convert existing applications to run on

embedded Linux. This paper will help you assess challenges and risks involved,

and appreciate the benefits realized from migration.

Challenges with proprietary RTOSs today

In today’s fast-moving and rapidly evolving world of software (SW) and

hardware (HW) development, especially in embedded field, traditional RTOS

specification has run into difficulties in providing the best baseline for

competitive products.

This is largely influenced by the following major topics:

1. HW Ecosystem

The RTOSs have limited HW support, and lag behind when it comes to

supporting newer SOCs. This contributes to a slower time to market and higher

cost of development of products using RTOSs.

2. SW Ecosystem and Middleware support

There exists limited middleware and SW support for peripheral drivers available

to RTOSs. Supporting new higher-level concepts using next generation buses

such as USB 3.0 and newest networking features are hard or costly to implement.

This contributes to either slower time to market and increased cost or lower

product competitiveness.

3. Fragmented and local usage base

The RTOSs usage is almost exclusive to the small market segments (e.g. QNX for

Automotive, ITRON for Japanese market etc.). This factor is largely behind the

main issues 1 and 2 (as mentioned above) but will also mean that there is limited

room for improvement to the situation and increased risk in taking on new

product programs based on an individual RTOS.

4. Limited expert developer base

Since a single RTOS has a limited user base, there are limited developer

resources available for working on product SW. This makes product

development more expensive and resource scaling is made difficult.

5. Closed Source with Supplier Dependency

Most proprietary RTOS are closed source i.e. no access to source code and

vendor often have tight control over schedule and technology planning. This

creates a huge dependency both in short term development planning and the

long term maintenance of the embedded application.

Advantages of Linux

Linux on the other hand provides an alternative that has features that are largely

the opposite of the problems with traditional RTOSs, namely:

1. HW, SW, Middleware Ecosystem and Vendor dependence

The Linux Ecosystem has, all things considered, likely the most advantageous

baseline when it comes to developing SW on non-mainstream HW. For Linux,

the latest SOC support is available from the launch of the devices, there is

extensive Middleware support - often using an Open Source license - and the

driver and pre-engineered application ecosystem available stands out in the top.

Compared to RTOSs, this aspect will make it faster and cheaper to provide

product SW, also typically with a more competent feature set. Also since Linux is

always open, no vendor lock-in is applicable here.

2. Global usage base and extensive developer community

The Linux Operating System is used around the world to power all kinds of

devices that require a full-featured OS, from heavy machinery to high-precision

electronics. Also Linux development skills are commonly available from

graduate student–level onwards in all degrees of expertise around the world.

This makes it much less risky and more cost-competitive for product

development than RTOSs.

So, whether you are planning a move to embedded Linux or are just considering

the investment needed to convert your existing application to run on embedded

Linux, this paper will help you understand the transition process, assess the

challenges and risks involved, and appreciate the benefits realized from such a

move.

Solution Overview

This section will cover the challenges, approaches available with the developers

today as well as process to achieve them. Lastly, it will highlight some of the

perceived benefits and challenges when targeting “Legacy to Linux”.

Migration to Linux, Challenges

The migration from an RTOS environment to Linux is certainly non-trivial and

this section aims to give an outline of the major challenges related to the effort.

1. Fear of the un-known (Linux?): The first problem that comes up when

gearing up for development in a new environment is the lack of initial

expertise in the domain, as is the case with Linux as well. However, since the

open nature of the Linux movement, such expertise is significantly easier to

gather by exploring the materials produced by the ecosystem. Also by

partnering with a commercial Linux vendor like MontaVista, further eases

the transition and makes new competence building tools available, such as a

dedicated training organization, customizable expert workshops and pre-

made RTOS to Linux solution material.

2. Free Software (How?): Another non-technical topic often surfacing together

with Linux is the open-source licensing, which can be seen as a risk by

stakeholders from different communities. However, with expert guidance

such as MontaVista can provide this risk can be in essence mitigated

completely and Intellectual Property is not a concern with Linux.

3. GPOS vs RTOS (Is Linux Real-Time? Footprint? Boot-up time?): First and

perhaps foremost of the technical challenges of migrating to Linux is the

concern about Real-Time requirements and the capabilities of legacy RTOSs

and multi-tiered operating systems such as Linux. While true that by default

when using Linux version provided by the OSS community, the response

latencies can be high and unacceptable for some RTOS-based designs, there

are versions of Linux that are much more suited for applications with RT

requirements.

Real-Time Requirements in Embedded Applications

All embedded applications have performance requirements. These include

needs for rapid boot time, high networking throughput, graphical rendering

speed, power management, “raw” computing power and other metrics of

merit. Some applications, but not all, also have needs for real-time

responsiveness. A good heuristic is

 100% of embedded applications have a performance requirement.

 40-50% of embedded applications have real-time performance

requirements.

 10-15% have some hard real-time requirements.

 < 5% have pervasive hard real-time requirements (all real-time, all

the time).

The reality of this paradigm is backed up by studies that survey developer

satisfaction with Linux real-time performance. For example, leading

research firm’s reports, several years running, those over 85% of developers

are completely satisfied with Linux real-time response.

Approaches to Real-Time Linux

Real-time requirements come in more than one flavor – not all applications

are created equal, nor are their needs for performance and responsiveness.

Segment Hard Real-time Soft Real-time Real-fast

Telecommunications &

network infrastructure

Frame-based

 protocols, Strict QoS,

bandwidth reservation

Fault response,

General QoS, VoIP

Most IP packet

processing

Mobile

communications &

consumer electronics

RF baseband
Multimedia,

networking
Imaging

Instrumentation and

industrial control

Signal processing, data

collection, motion

control, robotics

Vision systems
Data analysis,

CNC processing

Aerospace

and defense

RADAR, SDR, surface

control, target tracking

Display/imaging,

security, intruder

detection

Data analysis

Medical Radiotherapy, MRI/CAT
Surgical assist,

life support
Imaging

Figure1: Application segments and types of real-time requirements

Approaches to Real-Time Linux

Since the company was founded in 1999, MontaVista Software has invested

substantial resources in enabling Linux to offer real-time responsiveness

with native Linux constructs and APIs using open source software

technology present in the main Linux source trees.

However, there exist a number of other paths toward real-time

responsiveness in Linux that do not follow this open source, native,

mainstream approach and a few merit description here:

Real-fast : using fast CPUs to meet deadlines

Fine tuning : tweaking parts of Linux to meet deadlines

Co-resident RTOSes : embedding a second OS for real-time

Virtualization : hosting a second (RT)OS on a hypervisor

 Co-Resident RT* Virtualization Native Linux

Real-time APIs RT*-specific
Legacy RTOS APIs +

hypercalls

Native POSIX threads

and IPCs

Development

environment

Additional SDK

required

RTOS SDK +

Hypervisor Tools (?)

Standard IDEs,

e.g., devRocket

Performance Hard Real-time Hard Real-time Hard Real-time

Limitations

 Minimal RT*

Capabilities

 Requires special

device drivers

 Tracking kernel revs

 Legacy RTOS

capabilities

 Hypervisor IPCs

 Need to

paravirtualize guest

OS and drivers

 Limited CPU support

 Legacy RTOS

capabilities

 Sub 50 microsecond

worst case latencies

Source Code1 Partially Open Closed 100% Open Source

Bill of Materials
Extra RAM/Flash for

RT Components

Extra RAM/Flash for

RTOS and Hypervisor

Zero Additional

BoM Impact

Bill of Software RTLinux Royalty
RTOS and Hypervisor

Royalty
Royalty-Free

Figure 2: Comparing capabilities and impact of co-resident real-time with

native Linux

By working in concert with the open source community at large and with

key kernel maintainers in particular, MontaVista has been instrumental in

developing and propagating numerous advances in the Linux kernel and

user space libraries to enable native real-time. For real-time as well as for

CPU and board support, development tools, power management and other

embedded application enablers, MontaVista shows its ongoing commitment

to community processes and open source software.

Today MontaVista Linux –based real-time solutions are controlling anti-

aircraft guns, heart-rate monitoring equipment, industrial controllers and

much more.

1 At present, embedded hypervisors are not available as open source. It is theoretically possible to deploy Xen or KVM

to achieve the same ends.

RT* Invented and patented by FSM Labs, and today the property of Wind River Systems, which rechristened it

RTCore.

Now that we understand that Linux is a viable alternative to many

embedded use cases. Let us look at some of the other challenges when

considering Embedded Linux as a professional development environment

for a time bound real world product development.

Challenges of Embedded Linux Development

Let’s take a look at the primary challenges of embedded Linux development

that every developer has to address at some point. They are:

• Assembling a software base

• Creating a development environment

• Keeping current with software changes

Additionally, the normal challenges of any embedded software development

project or process must be addressed in the Linux environment as well:

• Configuration of the operating system platform

• Integration of custom applications

• Optimization for target hardware

Assembling a Software Base

One of the great strengths of open source software is the thriving and varied

community of developers and software and the many alternatives this

presents. However, a developer can invest many man-hours investigating

the best solution for a particular development environment. In face a

substantial amount of time can be spend merely understanding what the

alternatives are. A developer on an embedded Linux project can waste a

great deal of time simply surveying and selecting from the available

components.

Commercial embedded developers may be more accustomed to proprietary

products that provide a complete solution for a particular target board. In

general, one does not find a complete solution in the open source community

for embedded projects.

Simply bringing up a system for the first time requires selecting multiple

components:

• A bootloader

• A kernel base

• A toolchain

• A basic application environment

It may be necessary to acquire these from multiple independent source

locations. For example, MontaVista aggregates code from over 200 different

open source projects for its distributions. Once downloaded, these

components have to be ported to the target hardware, and then integrated

with each other and maintained throughout the product life-cycle.

Some semiconductor vendors provide their own Linux distributions, which

integrate a number of these items to provide a useful starting point.

However, to fully leverage their hardware, these distributions often

customize the kernel and other components in ways that are not compatible

with other components developed in the broader community. Combining

technologies from different sources may therefore present complicated

integration issues down the road. This often makes it difficult to make use of

important frameworks or applications from the open source community, and

delays the start of actual product development.

In addition, semiconductor vendors generally do not provide support,

maintenance or updates for their distributions. If they do, it’s typically only

for their largest customers, and then fairly limited

Creating a Development Environment

Most software development in the broader Linux community is based

around “self-hosted development.” That is, the host system (where

development is done) and the target system (where the application will run)

are the same. Because of this, little attention is often paid to a strict

separation between the host and target environments. This frequently results

in the application software having dependencies on the host environment.

For embedded developers, “cross-development” is the rule, with significant

differences between the host and target environments. The host and target

may be running different operating systems, and often different processors.

The target hardware, deliberately limited to meet costs, is often not capable

of supporting the workstation-level storage, processing power and graphics

capabilities that are desirable in a modern development system.

In order to create a complete development environment, an embedded Linux

developer may have to assemble his own cross-development environment.

Doing this includes the following tasks:

• Acquire a toolchain for the target hardware architecture

• Create a build environment around this toolchain

• Add the bootloader, kernel and base application software to this

environment

• Eliminate host system dependencies from the application software

• Port the base software to the target hardware architecture

• Integrate debugging and analysis tools

The build environment needs to be flexible, in order to support the many

disparate build frameworks that are in use in the open source community.

The build environment also needs to insulate the product build from the host

environment, so that a consistent product build can be produced on different

host systems with reliable, repeatable results.

The base software selected must further be optimized for the target hardware

and the target application. This task may include integrating or writing

kernel drivers for the target hardware devices, as well as adding specialized

open source or proprietary software applications and frameworks.

Keeping Current

Due to the rapid rate of innovation in the open source community, keeping

up-to-date on changes to different software projects may involve following

many disparate sources such as:

• Community mailing lists

• Vendor hardware mailing lists

• Security forums

• Web sites

• Source repositories

Software changes in the open source community are often distributed in the

form of “patches,” which describe the source code differences from a

previously released version of the software. If local changes have been made

to the original community software, either by the developer or the vendor

who provided the base code, there may be difficulties in applying the

community changes to the current software.

Vendor and community distributions will also usually only fix bugs on the

latest version of a distribution, and it can be a time-intensive task to back-

port these fixes to a released embedded system that is based on an older

version.

Sometimes bugs are addressed by systemic rather than narrowly targeted

changes to the software, which not only makes back-porting more difficult,

but also can introduce interface or behavioral changes that can require

modification of other software in the system. Repeated thorough testing is

necessary to ensure that the system continues to operate as intended, and

that new issues are not introduced by the updates.

The integration of such changes is a continuous challenge not just during the

development process, but also after release and over the lifetime of the

product. Many members of the open source community may not be

interested in helping with these issues, as they prefer to encourage

developers to update to the latest version of the software. This tendency

becomes stronger the older the base software version becomes, so products

with long life spans in particular may require more direct expertise in the

later years of their product life.

Dangers of These Challenges

Underestimating these challenges may lead to projects with ballooning costs,

protracted schedule delays, or in a worst case scenario, both. For instance,

development of significant Linux expertise may be required to create a new

distribution in-house. This often includes adding staff to focus on

maintaining the open source software, not doing new development. This

issue is frequently overlooked, as existing staff and management may

underestimate the effort required to do this in a production environment,

believing that open source software is an off-the-shelf solution.

The time required to develop such a project is also often miscalculated.

Training of staff may be slower than expected due to poor, out-of-date, or

non-existent documentation. Open source or semiconductor vendor code

may be less robust than required for a production environment, or may not

account for the limitations of an embedded environment, requiring

additional development time and/or staff. Linux drivers may be unavailable

for new or proprietary hardware, requiring additional development time,

and perhaps highly skilled developers with specialized expertise.

Yocto Project and MontaVista: Simplify Open Source Software Development

Commercial embedded software development often has competing needs for

higher flexibility with source control along with timely, cost-effective and

stable releases. Using Yocto Project™, MontaVista® Linux, offers an ideal

platform for developers who want to leverage the flexibility of a true open

source development platform, as well as the ability to achieve rapid time to

market.

MontaVista has been a forerunner and believer in bitbake and the

OpenEmbedded embedded development paradigm. MontaVista took this to

the next level by making our Carrier Grade Edition (CGE7) and Carrier

Grade eXpress (CGX2.0) comply with Yocto 1.4 and 2.0 respectively. This

allows MontaVista customers to take full advantage of the existing Yocto /

OpenEmbedded ecosystem with its support for added feature layers and

hardware support. Our next generation products will continue to align even

more closure to this globally accepted standard. MontaVista as a Yocto

Project participant member will continue to contribute to this open source

collaboration for standardization.

Yocto Project integration with MontaVista allows customers to fully

customize their distribution using a familiar interface with easy access to

source code, patches, and recipes on how to build binaries, while at the same

time providing MontaVista binaries for those customers who don’t have a

need for customization. MontaVista compliments the distribution with

custom developed features, leading edge development tools, technical

support, and access to our world class engineering service.

MontaVista DevRocket™ Integrated Development Environment (IDE)

MontaVista DevRocket is the integrated development environment (IDE)

that supports MontaVista Linux Platform and Application development.

DevRocket delivers a set of tools designed to streamline and automate

common embedded Linux development and analysis tasks, helping you

deliver products to market faster. Based on standard Eclipse plug-ins,

DevRocket significantly increases developer productivity by simplifying

complex development tasks.

MontaVista DevRocket helps both the platform developer and application

developer streamline the complex embedded Linux development process. By

using the Eclipse-based DevRocket IDE developers can:

 Work in a familiar, standards based IDE alongside other Eclipse-based

development tools.

 Easily incorporate internally developed or open source code in their

projects.

 Perform detailed analysis of performance, memory usage, memory leaks

at the platform and application level.

 Platform developers can easily download the source and build their

target distribution.

 New images can be quickly and easily moved to the target board using

the target management capabilities.

 Application developers can use the one click edit/compile/debug to

quickly build and deploy target images.

Migration Benefits: Improved Reliability

The basic architecture of an RTOS-based application has changed little in the last

20 years, despite huge advances in microprocessors and other aspects of

hardware design. RTOS applications are structured as a set of tasks (C functions,

typically), statically linked to run-time libraries (including the RTOS kernel

itself).

These tasks reside and execute in a single physical address space (in RAM or

sometimes in ROM) that they share with each other and with global application

data, system data, application and kernel stacks, memory mapped I/O ports, and

the RTOS kernel itself.

Classic RTOS Model: Maximum Exposure

This time-worn and familiar architecture, while simple, is highly exposed to

corruption: runaway tasks can write over application code and data, accidentally

write into peripheral device registers, and can corrupt kernel data structures and

overwrite the kernel code. Tightly packed task stacks can easily underflow and

overwrite one another, or charge downward through memory to corrupt the top

of the heap or other data or code laid out nearby.

Granularity of Failure in Space and Time with an RTOS

At a higher level, this informally organized and highly exposed architecture

presents two key challenges to code quality: scope of the failure itself, and

association of second order failures with the primary event.

When an individual task or other software component fails, the scope of its

failure is almost impossible to determine, let alone that it failed at all. Even when

a failure is detected and recovery attempted the granularity of failure ends up

being the entire system: Monitor code cannot usually safely restart tasks and the

RTOS cannot recover resources dynamically allocated by failed tasks. The result

is that recovery is most often accomplished through the brute-force use of

watchdog timers that reboot the entire system or software induced panics.

Most often when a program goes awry, it does so silently, so an errant task can

corrupt data and code anywhere in the RTOS system. With luck, the impact of

such corruptions arises immediately (illegal instructions generating exceptions),

but it is more likely that the damage will only surface at a later date – seconds,

hours, or months later. When aberrant symptoms do appear, it will be extremely

difficult to associate unexpected program behavior, whether subtle or crash-and-

burn, with its original cause.

Built-in Reliability from the Linux Programming Model

Linux, as UNIX-compatible operating system, presents a much more robust

application and system programming model to the programmer. Applications

execute in their own protected address spaces, for the most part invisible to one

another, and are prevented from overwriting their own code through the use of

hardware-based memory management units (MMUs) present on most modern

32 and 64 bit processors.

While they share this virtual address space with the Linux kernel, they cannot

overwrite kernel code or data. Since applications/processes cannot see one

another (they reside in unique virtual address spaces), they cannot corrupt each

other’s data or code.

Granularity of Failure and Rapid Recovery with Embedded Linux

Because each application process is self-contained and sealed off, most failures

are limited in scope to an individual process, which receives the “segmentation

violation” signal (SIGSEGV) when the fault occurs. These errors include

• Attempts to write to read-only segments (application and kernel code)

• Accesses to unitialized or misprogrammed pointers

• Stack underruns

By default, the programs receiving a SIGSEGV terminate, but signal handling

and remedies are possible with the appropriate signal handler.

When a process does fail, its resources (RAM, open files, sockets, IPCs, etc.) are

completely recovered by the operating system, which staunches memory leaks

and permits the clean restart of the failed process without need to reboot the

system. Moreover, “silent” corruption that can occur in an RTOS surfaces

immediately with embedded Linux, with failed processes optionally leaving

behind a core file readable by standard debuggers to find the source of

corrupting operations.

FAQ - Misconceptions about Embedded Linux

The goal of this document is to help developers consider for migration from

Legacy RTOSs to embedded Linux, mostly by introducing challenges and

benefits of such a move. However, many developers begin reading this

document faced with misconceptions and FUD regarding the migration process.

Several common areas of concern are documented in the following section:

Linux Networking – Up to the Task?

Many Legacy RTOS (like VxWorks) developers come to Linux with two sorts of

concerns about Linux networking:

The first is suitability. Many OEMs found the TCP/IP stack included with

VxWorks to be buggy and unreliable. Furthermore, since VxWorks is a

proprietary, closed source OS, they could not readily improve it and so had to

replace it wholesale. Unlike the legacy VxWorks BSD-based networking stack,

Linux TCP/IP is completely open source – you can review the code, make

changes and submit patches back to community repositories. Moreover, the

Linux TCP/IP stack powers tens of millions of Linux-based web servers and

ubiquitous routers, switches and internet appliances.

The second area of concern is performance. Wind River and others legacy

vendors have published synthetic benchmarks (usually with netbench),

predictably showing Linux networking as deficient when compared to VxWorks

and other legacy platforms. These benchmarks invariably involve arbitrarily

small packet sizes (≤16 bytes), atypical of real-world applications. For packet

sizes of 32 bytes and larger, Linux shows clearly higher throughput and

continues to make gains as packet size increases. This performance advantage

comes from better marshalling algorithms and more robust memory

management, bolstered by a global community development model.

Can Performance-sensitive Code Reside in User Space?

With VxWorks like Legacy RTOS, no distinction exists between system code and

user code. All execution occurs in privileged mode; device drivers, interrupt

handlers, time critical operations, and mainstream application code all run as if

they were part of the kernel (albeit with different priorities).

By contrast, Linux leverages native CPU mechanisms for segregating code into

system-critical operation (kernel space) and user applications (user space). But

Linux also employs a design philosophy of minimizing critical, kernel-level code

and of avoiding system calls altogether whenever possible (e.g., implementing

systems functions in user space libraries). When migrating your embedded

applications to Linux, many developers find themselves tempted to insert all

critical code into kernel space. Certainly, Linux architecture predicates that the

“top half” of devices drivers do reside in kernel space. But the “business end” of

drives, as well as other I/O-related and real-time code need not migrate to kernel

space as well. The privileges accorded to kernel space execution lie in the domain

of security and access to kernel data, not to performance and throughput.

Indeed, your project will be better served by migrating such code to user space

where it can be prioritized and tuned appropriately, not into the kernel. In kernel

space, application-specific code can end up competing with mundane but critical

kernel operations; it will lack access to standard libraries like glibc; it will bloat

your system’s trusted computing base (TCB); and it can potentially destabilize

system-wide performance.

What Happens to Process Resources at Exit?

In VxWorks, all running tasks allocate dynamic resources from a shared pool

using APIs derived from and working similarly to the C library malloc()

function. When a VxWorks task hangs or terminates abnormally, it is practically

impossible to recover dynamic allocations – cooperative memory allocation leads

to system-wide memory leaks and eventually the need to reboot.

As with VxWorks, Linux processes (and threads within them) can dynamically

allocate resources as needed in the course of execution. However, upon

termination, graceful or otherwise, the Linux run-time is able to recover those

resources – even resources shared with other processes.

Why Does Linux Require a File System?

Legacy VxWorks systems initialize by loading a single image from ROM to

RAM. That image contains the VxWorks kernel, libraries, drivers, applications

and any other code and often data of interest. In this context, the notion of a file

system entails additional software to access external storage media.

By contrast Linux requires the presence of a file system to operate. The main

reason behind this requirement is that programs in Linux, starting at boot-time

with init, are invoked by supplying a file descriptor / pathname for retrieving a

program image.

The Linux loader and APIs like execv() follow this paradigm, regardless of

whether the program in question is a binary executable, a script or other

program entity. Linux does not require, however, the presence of rotating media,

i.e., disks. Embedded designs and even desktop and server distributions can

operate from file systems implemented in RAM, Flash, over a network, and/or

with “disks” implemented as solid-state devices or on media with spindles and

platters. Tens of thousands of Linux-based applications are deployed this way,

with no impact on footprint or performance.

Must OEM Product Updates Be Delivered in Source?

With legacy VxWorks, updates, upgrades and patches usually require a complete

rebuild of the image containing the VxWorks kernel, libraries, drivers,

application code and data. OEMs, their channel and/or their customers must

acquire a complete new software load, or portions thereof in source code, and

build and reconstitute a system image. The target system must be shutdown and

a BIOS or other firmware then mediates local or remote re-flashing of the main

system ROM, followed by a reboot.

As noted in the previous section, all Linux systems deploy with some type of file

system. While this requirement may seem burdensome (it is not), it also

facilitates field updates and upgrades in either source or binary. Without

interrupting operating applications, Linux-based devices can receive new

versions of applications, libraries, drivers or other critical code and store them in

the local file system (e.g., in flash). Individual applications can then restart with

newly loaded pro- gram code without need for rebooting or other interruption.

Patched libraries will be ready the next time user programs load or access them.

And, modified device drivers can be stopped, unloaded and reloaded, in most

cases without need for rebooting.

Application-specific Migration

Each embedded application presents its own design and performance challenges,

in its original form and when retargeted to embedded Linux. Most of this white

paper has treated the application space as universal, targeting all versions of

Linux. However, applications in telecommunications infrastructure and in

mobile telephony can benefit from capabilities specific to Carrier Grade Linux

and to the partner ecosystems around them.

Migration to Carrier Grade Linux

The Carrier Grade Linux (CGL) requirements specification created by members

of the Open Source Development Lab (now under the auspices of the Linux

Foundation and of SCOPE) provides a framework, APIs and resources for

building standards-compliant highly available applications. Developers

migrating legacy applications to MontaVista Linux Carrier Grade Edition

(CGE), a registered and compliant CGL implementation, can take several paths

towards creating more reliable and available applications:

Generic Legacy Applications

Legacy applications that do not involve specific fault resilient or availability-

enhancing capabilities can benefit in several ways from migration to CGE

 Improved overall reliability – just rehosting on CGE imbues legacy

applications with greater fault resilience through standards-based fault

isolation, management and resolution in the CGL platform.

 Better system management – legacy code can be enhanced to use SAF

HPI and other CGL required capabilities to manage next generation

hardware platforms like ATCA and BladeCenter.

 Adding HA Wrapper Code – using HA middleware solutions from

MontaVista partners like OpenClovis and GoAhead, developers can

easily create “wrappers” for general purpose code needing additional

reliability/availability. Such wrapper code represents a low investment,

low risk path to enhancing up-time and reducing failover latency

through software and hardware management.

 Full CGL and Middleware Port – developers can realize the maximum

benefit, incrementally or in one fell swoop, by migrating and

rearchitecting generic legacy code to a highly available platform based

on MontaVista CGE and supporting middleware.

Fault-Resilient Legacy Code

When legacy code includes its own fault-resilience or high-availability scheme,

migration can present fewer challenges, and in some cases, new ones. If the

legacy code employs standards based APIs and management architectures (e.g.,

SAF HPI or commercial HA middleware), then moving to CGE will not differ

greatly from migrating non-HA applications – legacy highly available functions

and semantics will be comparable or in some cases identical to those present in a

CGL stack. If, however, the legacy fault resilience and management scheme is

highly proprietary and application-specific, then your mileage will vary

Conclusions

Migrating from proprietary/closed source/legacy RTOSs to Linux provides

benefit of a modern and well supported platform that is proven for versatility of

use cases supported and is highly reliable, secure and feature rich.

While the migration from these traditional systems does present a variety of

challenges, the benefits far outweigh the investment needed to move to

embedded Linux. The risk doesn’t arise from leaving behind your familiar

environment, tools, and APIs – the real risk lies in standing still while the

embedded and pervasive systems development communities move forward, at

Internet speed.

MontaVista has been an embedded Linux provider in the commercial space since

1999, and Linux has always been the only target area for our company, also the

main idea the company was founded on was the ability to use Linux where

traditionally RTOS-type OS:s have been used. Therefore we believe that we have

unique expertise in helping our customers to migrate their existing SW

investment over to Linux, taking advantage of the new HW and SW ecosystem

and the advantages it provides in taking your products to the market faster, with

more competitive features and less cost.

By following the steps outlined above, and by leveraging tools like the

MontaVista RTOS migration kits, you can successfully migrate your existing

legacy RTOS code to a modern embedded Linux platform.

This White Paper is for informational purposes only. MONTAVISTA MAKES NO WARRANTIES, EXPRESS OR

IMPLIED, IN THIS WHITE PAPER. MontaVista cannot be responsible for errors in typography or photography.

©2016 MontaVista Software, LLC. All rights reserved. Linux is a registered trademark of Linus Torvalds. MontaVista is a

registered trademarks or registered trademarks of MontaVista Software, LLC. All other names mentioned are trademarks,

registered trademarks or service marks of their respective companies

Information in this document is subject to change without notice.

Appendices

 William Weinberg, Moving Legacy Applications to Linux: RTOS

Migration Revisited, 2014

 Iisko Lappalainen, Migrating from ITRON to Linux Concept White

Paper, 2013

 MontaVista White Paper – Streamlining the Embedded Linux

Development Process

 William Weinberg, Real-Time Technology for Embedded Linux The

MontaVista Advantage, 2007

 Gallmeister, Bill. POSIX.4 Programming for the Real World. (Sebastopol,

Calif.: O’Reilly) 1995.

 Haraszti, Zsolt. Migrating Legacy Applications to COTS High

Availability Middleware, (Petaulma, Calif.: OpenClovis), 2006.

 Linux Foundation. Carrier Grade Linux Specifications, versions 3.2 and

4.0, 2007.

 Montalban, Manuel. “Can Virtualization Pave the Way to Embedded

Open Source Advantage?” Presentation at Informa Open Source in

Mobile, (Amsterdam), 2006.

 Nichols, Buttlar, and Farrell. Pthreads Programming: A POSIX Standard

for Better Multiprocessing.(Sebastopol, Calif.: O’Reilly), 1996.

 Open Group. The Open Group Base Specifications Issue 6 IEEE Std

1003.1, 2004.

 Weinberg, William. “Porting RTOS Device Drivers to Embedded Linux,”

Linux Journal n. 126: October 2004.

 Weinberg, William. “Migration from UNIX to Linux”. Presentation at

LinuxWorld Expo (San Francisco) 2005.

 Weinberg, William. “Moving from a Proprietary RTOS to Embedded

Linux.” RTC Magazine, April 2002.

MontaVista Software, LLC | 2315 North 1st Street San Jose, CA, 95131 | www.mvista.com

Doc Id: MVWP-LG2LX1-061716

http://www.mvista.com/

