
MontaVista Software, LLC | 2315 North 1st Street San Jose, CA, 95131 | www.mvista.com

Legacy to Linux: Migrating from
proprietary RTOS to Open Source Linux

Sachin Kaushik
Technical Marketing Specialist

MONTAVISTA SOFTWARE, LLC.

So, whether you are planning a move to embedded
Linux or are just considering the investment
needed to convert your existing application to run
on embedded Linux, this paper will help you
understand the transition process, assess the
challenges and risks involved, and appreciate the
benefits realized from such a move.

http://www.mvista.com/

MontaVista Software, LLC | 2315 North 1st Street San Jose, CA, 95131 | www.mvista.com

Contents

EXECUTIVE SUMMARY ... 3

INTRODUCTION .. 5

SOLUTION OVERVIEW ... 6

Migration Execution Architectures .. 6

The Porting Process .. 12

Migration Resources... 16

CONCLUSIONS.. 18

APPENDICES.. 20

http://www.mvista.com/

Executive Summary

Embedded applications migration from one version of system software to

another is often a difficult task. Migration a real-time embedded application to a

new OS is amongst the most challenging tasks. So, if you are considering the

investment needed to convert your existing application to run on embedded

Linux, this paper will help you understand the transition process, models

available and some useful pointers.

(Note: The challenges and risks involved, along with various benefits realized by such

move have been covered in a separate paper, Legacy to Linux: Challenges & Benefits).

At a very high-level, a simple architecture description suggests a straightforward

architecture for porting RTOS code to Linux:

 The entirety of RTOS application code (minus kernel and libraries)

migrates into a single Linux process,

 RTOS tasks translate to Linux threads

 RTOS physical memory spaces (that is, entire system memory

complements) map into Linux virtual address space.

 A multi-board or multiprocessor architecture such as a VME rack

migrates into a multi-process Linux application.

Fig a: Key Attributes of Legacy OS and Linux

This paper tries to highlight that Legacy to Linux Migration involves Real

Investment,

 Usually entails multiple devices / interfaces

 Need to capture legacy code, technology, knowledge

 Modern programming model (Flat Memory to MMU plus)

However, such an approach presents your organization with,

Challenges

 Changes in design, practices, scope of code

 May need to deprecate s/w and h/w architectures

 Need to (re)train existing team, add new expertise

Opportunities

 Optimize platform, improve performance

 Unify fragmented internal platforms, code bases

 Create a more maintainable foundation for future

 Join with mainstream in embedded and enterprise

Introduction

Embedded system software and the open source Linux operating system have

co-existed for a long time now. Companies using Linux for their embedded

products find it time and cost efficient, when it comes to performance and

maintainability. Another solution for embedded systems is a Real-Time

Operating System (RTOS). The goal of this this paper is to investigate whether

legacy RTOS based embedded design can be migrated to embedded Linux,

addresses how to map legacy architectures onto Linux, options for migrated

application execution, API and IPC translation, enhanced reliability realized

from migration, the migration process itself, and application-specific migration

challenges and solutions.

While not every Legacy RTOS based design is a candidate for migration to a

modern OS like Linux, many projects remain locked into the legacy Wind RTOS

due to

 Concerns about retooling / retraining for a new platform

 Misconceptions about Linux architecture, capabilities and performance

 Budget constraints for migration engineering

The purpose of this white paper is to address these and other concerns, to make a

clear case for migration, and to elucidate both technical and financial benefits

conferred by moving.

You should find this document useful if you are planning a move to embedded

Linux in the near future or even if your team is just considering the level of

investment to convert existing applications to run on embedded Linux. This

paper will help you understand the transition process, assess challenges and

risks involved, and appreciate the benefits realized from migration.

The Linux Operating System is used around the world to power all kinds of

devices that require a full-featured OS, from heavy machinery to high-precision

electronics. Also Linux development skills are commonly available from

graduate student–level onwards in all degrees of expertise around the world.

This makes it much less risky and more cost-competitive for product

development than RTOSs.

So, whether you are planning a move to embedded Linux or are just considering

the investment needed to convert your existing application to run on embedded

Linux, this paper will help you understand the transition process, assess the

challenges and risks involved, and appreciate the benefits realized from such a

move.

Solution Overview

This section will cover the challenges, approaches available with the developers

today as well as process to achieve them. Lastly, it will highlight some of the

perceived benefits and challenges when targeting “Legacy to Linux”.

Migration Execution Architectures

While Linux increasingly takes the place of traditional RTOSs, executives, and

kernels, the architecture of the Linux operating system is very different from

legacy OS architectures. Moreover, there exists more than one means to host

legacy RTOS-based applications on a POSIX-type OS like Linux. The following

section lays out three approaches to migration, from conservative means that

preserve legacy attributes and architecture to more extensive revamping of code

and application structure.

Emulation, Virtualization, and Native

This section compares and contrasts the three most relevant migration and re-

hosting paradigms for legacy software under Linux:

1. RTOS API emulation over Linux

2. Run-time partitioning with virtualization

3. Full native Linux application port

RTOS Emulation over Linux

For legacy applications to execute on Linux, some mechanism must exist to

service RTOS system calls and other APIs. Many RTOS entry points and stand-

alone compiler library routines have exact analogs in Linux and the glibc run-

time library, but not all do. Frequently new code must intervene to emulate

missing functionality. And even when analogous APIs do exist, they may present

parameters that differ in type and number.

A classic RTOS can implement literally

hundreds of system calls and library APIs. For

example, VxWorks documentation describes

over one thousand unique functions and

subroutines. Real-world applications typically

use only a few dozen RTOS-unique APIs and

call functions from standard C/ C++ libraries for

the rest of their (inter)operation. To emulate

these interfaces for purposes of migration,

developers only need a core subset of RTOS

calls.

Many OEMs choose to build and maintain emulation lightweight libraries

themselves; others look to more comprehensive commercial offerings from

vendors such as MapuSoft. There also exists an open source project called v2lin

that emulates several dozen commonly used VxWorks APIs. Learn more at

http://sourceforge.net/projects/v2lin/

Partitioned Run-time with Virtualization

Virtualization involves the hosting of one operating system running as an

application “over” another virtual platform, where a piece of system software

(running on “bare metal”) hosts the execution of one or more “guest” operating

systems instances. In enterprise computing, Linux-based virtualization

technology is a mainstream feature of the data center, but it also has many

applications on the desktop and in embedded systems.

Data center virtualization enables server consolidation, load-balancing, creating

secure “sandbox” environments, and legacy code migration. Enterprise-type

virtualization projects and products include the Xen Hypervisor, VMware and

others. Enterprise virtualization implements execution partitions for each guest

OS instance, and the different technologies enhance performance, scalability,

manageability and security Embedded virtualization entails partitioning of CPU,

memory and other resources to host an RTOS and one or more guest OSs

(usually Linux), to run higher-level application software.

Virtualization supports migration by allowing an RTOS-based application and

the RTOS itself to run intact in a new design, while Linux executes in its own

partition. This arrangement (see Figure 2.) is useful when legacy code not only

has dependencies on RTOS APIs but on particular performance characteristics,

for example real-time performance or RTOS-specific implementations of protocol

stacks.

http://sourceforge.net/projects/v2lin/

Embedded virtualization as such represents a short and solid bridge from legacy

RTOS code to new Linux based designs, but that bridge exacts a toll OEMs will

continue to pay legacy RTOS run-time royalties and will also need to negotiate a

commercial license from the virtual machine supplier.

A wide range of options exist for virtualization, including the mainstream KVM

(Kernel-based Virtualization Manager) and Xen. Embedded-specific para-

virtualization solutions are available from companies like VirtualLogix. (Visit

http://www.virtuallogix.com for more information.) Open source options include

the L4 partitioned microkernel. (Learn more at http://l4ka.org/)

Native Linux Port of Application

Emulation and virtualization can provide straightforward migration paths for

prototyping, development, and even deployment of legacy RTOS applications

running on Linux. They have the drawback, however, of including additional

code, infrastructure, and licensing costs. Instead, “going native” on Linux

reduces complexity, simplifies licensing, and enhances portability and

performance.

The choice need not be exclusive. The first time OEMs approach migration they

are likely to leverage emulation and virtualization technologies. With greater

familiarity with development tools and run-time attributes of Linux, OEMs can

re-engineer legacy applications incrementally for native Linux execution. One

approach is to choose individual legacy programs for native migration and to

host them under Linux in separate processes. This technique works best with

software exhibiting minimal or formalized dependencies on other subsystems.

Another sensible practice is to implement new functionality only as native code,

even if employing emulation or virtualization.

http://www.virtuallogix.com/
http://l4ka.org/

Mapping Legacy Constructs onto Linux

The above architecture descriptions readily suggest a very straightforward

architecture for porting RTOS code to Linux: the entirety of RTOS application

code (minus kernel and libraries) migrates into a single Linux process; RTOS

tasks translate to Linux threads; RTOS physical memory spaces, (i.e., entire

system memory complements), map into Linux virtual address spaces – a multi-

board or multiple processor architecture (like a VME rack) migrates into a multi-

process Linux application as in Figure 4 below.

Architectural Considerations: Process and Thread Creation

Whether you use RTOS emulation kits for Wind River VxWorks and pSOS, or

perform your port unaided, you will ultimately have to make decisions

regarding whether to implement RTOS tasks as processes or as threads. While at

its heart, the Linux kernel treats both processes and threads as co-equal for

scheduling purposes, there are different APIs for creating and managing eac type

of entity, and performance and resource costs (and benefits) associated with

each.

In general, processes are “heavier” than threads because they carry more context.

A Linux thread context (like an RTOS task) consists primarily of a subset of CPU

registers, a stack, a current program counter (PC), and some entries in the

kernel’s data structures (TCBs in an RTOS). A process adds a complete virtual

address space to this definition. Thus, at a minimum, the kernel must also create

and track page translations and types for all code, constant text, and data used by

the process. The major impact of this weightier process context comes at two

junctures: process creation time and inter-process context switch time.

RTOS code strives for lightweight execution whenever possible. As such, many

RTOSs offer dynamic task creation APIs, but others feature only static task

definition tables, and all RTOS vendors discourage frivolous and frequent task

creation to save time and space. The migration process provides a good

opportunity to audit task/thread inventory of legacy RTOS applications and to

optimize resource usage.

The kernel mechanism for creating processes is the fork() system call. Linux

process creation is not intentionally a more cumbersome operation – Linux

processes are heavier because they offer greater benefits of protection and

reliability.

Forking New Processes

RTOS task and thread creation in both RTOSes and Linux essentially identify

existing program functions as new schedulable entities (as in VxWorks task

creation). By contrast, the Linux system call/API fork() causes the currently

executing file to split, amoeba-like, into identical copies, a parent and a child.

The parent and child initially only differ in their PID (Process ID), so the first

thing programs do after a fork is to ponder, existentially, who am I? This

deliberation is accomplished most often with a switch statement in C. The return

value of fork() for the parent will be the child’s PID, whereas the child will see

the return as 0. Thus, the parent can “watch over” the child and each “knows” its

identity.

Forking involves several steps (simplified):

1. Create new virtual address space.

2. Map TEXT pages into new space (no copying – image is shared).

3. Copy DATA pages (actually occurs per page, on first write).

4. Create copies of all current file descriptors.

5. Create scheduler entry (with clone()).

6. Assign new PID.

7. Schedule child process.

The child process can then run “as is” – in the image of the parent, or the child

can call execv() to load in a new binary image from a file system path into the

child process memory space.

Thread Creation

Thread creation with the clone() system call or the pthread_create() API is

altogether a simpler affair, since all threads within a process share the same

address space, file descriptors, etc.

Creating new threads proceeds as follows:

1. Lay out new stack in current user process space.

2. Create scheduler entry.

3. Assign new ID (TID).

4. Schedule new thread or wait per semantics of pthreads interface.

Context Switch Implications

Switching among threads and processes involves different amounts of effort and

context saving. The fastest context switch is of course among threads running in

a single process-based virtual address space. Switching between threads across

process boundaries involves TLB (Translation Look-aside Buffer) spills,

reloading of page translation table entries, and potential saves/restores of

additional context such as FPU, MMX, Altivec, and ARM co-processor registers.

Design Criteria: Processes or Threads?

While a first order port will typically map RTOS tasks onto Linux threads,

subsequent modifications will require decisions on the part of the developer.

Following are some heuristics for making this decision:

• In general, create processes during initialization and threads on the fly.

• Use processes for greater reliability and where health monitoring and failure

detection (via SIGCHLD) is a concern.

• Employ processes to encapsulate third-party code; if that code blows up, it

can do much less harm and can always be restarted.

• No universal benchmarks are available to compare process and thread

creation costs. Calls to fork() can run into tens or hundreds of milliseconds;

cloning is much more sprightly and executes in tens of microseconds.

• Creating entirely new processes / loading new programs (via calls like

execv()) carries the heaviest cost, since it accesses file systems to load an

executable image and must create a new virtual address space.

The Porting Process

The process for porting from a proprietary RTOS to embedded Linux is really no

different from moving any application across host platforms, although the

dependencies are more involved. Let’s start with a discussion of the basic steps

required and subsequently address key dependencies such as APIs and IPCs.

Considerations

Most developers using off-the-shelf RTOS development kits have a mix of

vendor-supplied scripts, IDE configurations, and makefiles for building and

configuring system components, and user-developed methods for compiling and

linking application code with the kernel and run-time libraries. This white paper

will focus on the latter since embedded Linux will take over for the legacy RTOS.

The worst-case port will involve an exhaustive audit of application use of all

vendor-supplied APIs, call parameters, and global data structures as specified in

header files and implemented in libraries. Most companies maintain

documentation describing some portion of their own APIs and API usage. To

explore undocumented use, and to audit third-party code, tools like Klocwork

K7 may be useful.

A detailed code and API audit will reveal several classes of mapping and

equivalence among calls to an RTOS and those available under Linux:

• Transparent mapping: function name, prototype, parameters, and types are

identical; semantics may still diverge.

• Near-transparent mapping: prototype mostly the same; API exhibits minor

differences in parameters or types.

• Easy recode/emulation: nominally equivalent function/API exists; parameters

can be typecast or call directed through a stub or wrapper.

• Heavy rewrite required: no semantic equivalent or one-to-many mapping of

functionality.

The ideal port would involve applications leveraging only easily mappable calls

and so would entail only the substitution or aliasing of key header files and

replacement of companion libraries as specified in make and build scripts.

Departures from this ideal (a.k.a. reality) may result in the need to re-architect

and recode.

Basic Steps

Whatever the particulars of your legacy code base, you and your team will likely

follow these elementary steps:

1. Set up a Linux-based cross development environment including cross

development tools (e.g., MontaVista Linux Carrier Grade Edition (CGE)

and/or Carrier Grade eXpress (CGX™) with DevRocket™).

2. Copy RTOS application source tree to development environment.

3. Modify build scripts and IDE configurations to link emulation libraries (if

any).

4. Modify/alias pathnames and/or modify source files to reference substitute

header files (original RTOS header files can introduce conflicts with native

Linux headers).

5. Add #includes for Linux header files to your application sources themselves

(usually stdio. h, stdlib.h, string.h, unistd.h, and errno.h) or via emulation

headers (if any).

6. Attempt to make/build and examine results.

7. FIRST resolve symbolic issues for implemented APIs (e.g., simple naming

and type-safe linkage issues).

8. Address unimplemented APIs and data structures. (See below.)

9. Repeat steps 5-8 as needed (a.k.a. “whack-a-mole”).

10. Tune performance, as needed, using tools and capabilities found in

MontaVista DevRocket.

11. Selectively recode and re-architect to leverage native Linux constructs.

Re-architecting: Where to Begin?

Optimizing application and system code for a new platform can be a daunting

task. Briefly, you should consider three approaches or focus areas:

Static Analysis and Team Experience

Your organization probably already employs some form of static analysis tools

and disciplines. Your team also possesses a wealth of a priori knowledge about

and real-world experience with the code undergoing migration. Using this mix

of tools and talent, begin by reviewing:

• Legacy main-line / main-loop

• Identified most-called functions implemented by your application (top 15%)

• Complete inventory of most frequently and least frequently-called RTOS APIs

• Known critical paths and bottlenecks and by examining:

• Mapping of RTOS APIs onto Linux repertoire (See next section.)

• Shared data structures

• Use of IPCs and synchronization mechanisms

Just this level of analysis will highlight your primary candidates for re-

architecting.

Dynamic Analysis

Use of dynamic analysis will confirm raw static frequency analysis and provide

guidance on where to spend your engineering budget in optimizing and re-

architecting.

A key exercise is to compare where your legacy application spent its time in its

original hosting vs. time spent after migration. An important metric is the ration

between time spent in user code vs. in system libraries and kernel execution.

MontaVista DevRocket features a number of capabilities in this area.

Real-Time and Run-Time Performance Analysis

One of the first areas your team is likely to examine is performance. Linux may

very well meet your legacy performance requirements, or there may exist

performance gaps to be closed. In any case, performance is a good candidate for

tuning and re-architecting. Metrics of merit include

• Interrupt latency

• Preemption/scheduling latency

• Start-up/boot time

Again, MontaVista DevRocket provides valuable tools and capabilities to ease

this kind of evaluation.

APIs (Applications Programming Interfaces)

While the benefits of moving to Linux are enticing, you still have to address the

particulars of moving your application’s use of RTOS programming interfaces

over to the repertoire offered by Linux. The good news is that Linux features

perhaps the richest array of APIs of any embedded operating system; the bad

news is that your code may exploit RTOS calls and features that do not readily

translate into the Linux model.

Your application probably makes no distinction between direct system calls and

library functions and may leverage dozens or even hundreds of available APIs

under an RTOS or Linux. Kernels like VxWorks, pSOS, VRTX, Nucleus, and

other RTOSs have accrued hundreds, even thousands, of APIs in their decades of

commercial existence and it is not practical to address the mass of those APIs. A

more pragmatic approach is to translate and emulate a clean core set of the four

or five dozen most common calls, and to leave the rest for ad hoc translation and

implementation.

IPCs and Synchronization

Every operating system, whether general-purpose or embedded, supports inter-

task communication and synchronization in a slightly different way. The good

news is that the most common set of IPC (inter-process communication)

mechanisms found in RTOS repertoires have ready analogues in embedded

Linux;. Indeed, Linux is extremely rich in this area. The bad news is that RTOS-

to-Linux mapping is seldom completely one-to-one and that even when apparent

IPC equivalents exist, their scope may be focused on communications among

processes rather than among lighter-weight threads most analogous to RTOS

tasks, with subtly differing semantics.

The following sections survey the most common RTOS IPCs and how they map

onto Linux analogues, as summarized in the following table:

RTOS IPCs Linux IPCs

Semaphores (Counting and binary) SVR4 semaphores

Mutexes POSIX.1c mutexes, condition variables

Message queues and mailboxes Pipes/FIFOs, SVR4 queues

Shared memory Shared memory

Events and RTOS signals Signals, RT signals

Timers, Task delay POSIX timers/alarms sleep() and nanosleep()

Watchdogs, task regs, partitions/buffers Emulated by tool kits

API and IPC Accommodation Strategies

We have looked at common calls and IPCs for VxWorks and pSOS. Other

commercial or in-house RTOSs are likely to implement comparable calls, but are

just as likely to feature their own unique APIs and IPCs.

Whatever the platform in question may be, accommodation of its particulars will

fall into three categories:

1. Equivalence

Many RTOSs offer calls completely or nearly identical to Linux APIs. Because

many RTOSs were written by UNIX programmers, they are likely to feature

entry points like open, write, etc. Such calls will either map 1:1 completely

unchanged, will be hidden by compiler library wrappers, or may require some

minimal tweaking with #defines in header files.

2. Emulation of APIs

Some RTOS APIs, while not differing greatly, will require massaging with the

insertion of library code to emulate additional or different functionality. An

example is pSOS+ APIs, which carry notoriously long and obscure parameter

lists. Since most programmers only use the first few parameters anyway, you can

either nail them down as constants in your emulated code, or encapsulate them

in polymorphic C++ class methods.

Emulation can carry performance costs, and developers always assume that

emulated code runs less efficiently than the original native construct.

Anecdotally, many applications have actually experienced performance

increases, both in general performance and in the area of networking. Your

mileage may vary!

3. Recoding

When RTOS constructs simply don’t exist for Linux, neither natively nor via

emulation libraries, you will have to recode and re-implement. While recoding is

usually the minority case, it is the least convenient.

Migration Resources

Some readers of this white paper will find reassurance in the architectures, paths,

examples and proof-points supplied to support and justify the choice to move off

legacy RTOSs. Others may see the same information as a “glass half full” and be

daunted by the number of choices and options for migration. The following

section presents information of both technical and human resources for

facilitating the migration process.

Documentation and Training

In stark contrast to legacy RTOS platforms like VxWorks, Linux source code and

documentation is broadly available to a population that extends well beyond the

cadres of embedded developers. Its global adoption for desktop, data center and

of course device software mean that you and your team can look to off-the-shelf

resources that include:

 Readily available books on Linux programming, configuration, security,

graphics, internals, drivers, etc. There are even a growing number of

volumes that focus exclusively on embedded Linux,

 The Linux Documentation Project (http://tldp.org/)

 Myriad web sites documenting the same topics and more for enterprise,

desktop and embedded applications

 Yocto Project Docuementaion

https://www.yoctoproject.org/documentation

 Training from MontaVista and other Linux vendors as well as

independent Linux training

 Information from semiconductor suppliers and chipset IP licensors

(ARM, MIPS, et al.)

 This wealth of resources reflects the ubiquity of Linux knowledge,

experience and expertise across the IT marketplace, supporting a

significantly larger global talent pool than exists for Legacy RTOSs.

DIY vs. Outsourcing

The purpose of this white paper is to educate readers about accessible

architectures and paths of least resistance to successful migration. The

information presented is probably not sufficient to serve as a “how to” guide for

http://tldp.org/
https://www.yoctoproject.org/documentation

DIY (Do It Yourself) migration, but the net message is not intended to discourage

OEMs and developers from proceeding on their own.

Like many engineering projects, legacy RTOS migration boils down to some key

Build vs. Buydecisions. To aid in this decision process, you and your team

should ask yourselves

 What is your team’s pre-existing expertise in both Legacy RTOS (e.g.

VxWorks) and Linux?

 How will training team members in either the source or target domain

impact project schedules?

 What is the size and scope of the legacy code base and how transparent

is that code to current team members?

 Is your team’s staffing sufficient to support the full legacy code base? To

support the migrated code base, including Linux platform code and

middleware?

 Does migration and related continuation engineering activities represent

a core value-added activity or a marginal engineering investment?

The answers to these and other questions can help you decide whether to

perform the migration yourselves or outsource the work to a Linux platform or

services company integrate and deploy your own Linux platform from free

software repositories or engage with a commercial embedded Linux supplier like

MontaVista Software.

(Note: More information about the advantages and the engagement process of the

embedded Linux professional services have been covered in a solution brief and same can

be obtained from our external website www.mvista.com).

Open Source Projects and Commercial Products for Migration

Throughout this white paper, the author has mentioned projects and suppliers

whose wares simplify and accelerate the migration process. You should also

review the members of the MontaVista Partners Program for additional

suppliers.

http://www.mvista.com/

Conclusions

The move is on – developers are leaving behind legacy VxWorks in search of

more reliable and open embedded platforms like Linux. While the migration

from VxWorks can present a variety of challenges, the benefits far outweigh the

investment needed to move to embedded Linux. The risk doesn’t arise from

leaving behind your familiar environment, tools, and APIs – the real risk lies in

standing still while the embedded and pervasive systems development

communities move forward, at Internet speed.

MontaVista has been an embedded Linux provider in the commercial space since

1999, and Linux has always been the only target area for our company, also the

main idea the company was founded on was the ability to use Linux where

traditionally RTOS-type OS:s have been used. Therefore we believe that we have

unique expertise in helping our customers to migrate their existing SW

investment over to Linux, taking advantage of the new HW and SW ecosystem

and the advantages it provides in taking your products to the market faster, with

more competitive features and less cost.

By following the steps outlined above, and by leveraging tools like the

MontaVista RTOS migration kits, you can successfully migrate your existing

legacy RTOS code to a modern embedded Linux platform.

This White Paper is for informational purposes only. MONTAVISTA MAKES NO WARRANTIES, EXPRESS OR

IMPLIED, IN THIS WHITE PAPER. MontaVista cannot be responsible for errors in typography or photography.

©2016 MontaVista Software, LLC. All rights reserved. Linux is a registered trademark of Linus Torvalds. MontaVista is a

registered trademarks or registered trademarks of MontaVista Software, LLC. All other names mentioned are trademarks,

registered trademarks or service marks of their respective companies

Information in this document is subject to change without notice.

Appendices

 William Weinberg, Moving Legacy Applications to Linux: RTOS

Migration Revisited, 2014

 Iisko Lappalainen, Migrating from ITRON to Linux Concept White

Paper, 2013

 Gallmeister, Bill. POSIX.4 Programming for the Real World. (Sebastopol,

Calif.: O’Reilly) 1995.

 Haraszti, Zsolt. Migrating Legacy Applications to COTS High

Availability Middleware, (Petaulma, Calif.: OpenClovis), 2006.

 Linux Foundation. Carrier Grade Linux Specifications, versions 3.2 and

4.0, 2007.

 Montalban, Manuel. “Can Virtualization Pave the Way to Embedded

Open Source Advantage?” Presentation at Informa Open Source in

Mobile, (Amsterdam), 2006.

 Nichols, Buttlar, and Farrell. Pthreads Programming: A POSIX Standard

for Better Multiprocessing.(Sebastopol, Calif.: O’Reilly), 1996.

 Open Group. The Open Group Base Specifications Issue 6 IEEE Std

1003.1, 2004.

 Weinberg, William. “Porting RTOS Device Drivers to Embedded Linux,”

Linux Journal n. 126: October 2004.

 Weinberg, William. “Migration from UNIX to Linux”. Presentation at

LinuxWorld Expo (San Francisco) 2005.

 Weinberg, William. “Moving from a Proprietary RTOS to Embedded

Linux.” RTC Magazine, April 2002.

 GALLMEISTER, Bill. O. [1995]. POSIX.4 : Programming for the Real

World. O'Reilly & Associates; ISBN: 1565920740.

 HALLINAN, Christopher. [2006]. Embedded Linux Primer: A Practical

Real-World Approach. Prentice Hall Open Source Software

Development Series.

 WEINBERG, William [2005]. “Migration from UNIX to Linux”.

Presentation at LinuxWorld Expo, San Francisco - August 10.

 WEINBERG, William [2002]. Moving from a Proprietary RTOS to

Embedded Linux. RTC Magazine, April.

MontaVista Software, LLC | 2315 North 1st Street San Jose, CA, 95131 | www.mvista.com

Doc Id: MVWP-LGC2LNX-051916

http://www.mvista.com/

